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Figure 1: Proposed architecture for omnidirectional single image depth estimation. The input data in the dashed box on the left
are RGB omnidirectional images, including the source domain with labels and unlabelled target domain, given with domain
labels as 0 and 1, respectively. The encoder-decoder of the upper part of the image is an improved model from [Alhashim
and Wonka 2018]. We changed the backbone of the encoder as a ResNet50 model pre-trained on the ImageNet. The right side
shows the model outputs, including depth maps and domain labels. The lower part shows the domain label reversal layer and
the domain classifier with two fully connected layers.

ABSTRACT
Omnidirectional cameras are becoming popular in various applica-
tions owing to their ability to capture the full surrounding scene in
real-time. However, depth estimation for an omnidirectional scene
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is more difficult than normal perspective images due to its different
system properties and distortions. It is hard to use normal depth
estimation methods such as stereo matching or RGB-D sensing. A
deep-learning-based single-shot depth estimation approach can be
a good solution, but it requires a large labelled dataset for training.
The 3D60 dataset, the largest omnidirectional dataset with depth la-
bels, is not applicable for general scene depth estimation because it
covers very limited scenes. In order to overcome this limitation, we
propose a depth estimation architecture for a single omnidirectional
image using domain adaptation. The proposed architecture gets
labelled source domain and unlabelled target domain data together
as its input and estimated depth information of the target domain
using the Generative Adversarial Networks (GAN) based method.
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The proposed architecture shows >10% higher accuracy in depth
estimation than traditional encoder-decoder models with a limited
labelled dataset.
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1 INTRODUCTION
In the past decades, 3D scene reconstruction and representation
have been essential tasks in computer vision and robot vision. Depth
estimation, predicting or measuring the distance to visible surfaces
from the sensor, is one of the most important modules in 3D scene
reconstruction [Steger et al. 2018]. Depth sensors, such as LiDAR
and Time-of-Flight cameras, can generate relatively accurate depth
maps, but these sensors usually have limitations, e.g., lack of texture,
short sensing range, expensive reconstruction process [Alhashim
and Wonka 2018], low resolution [Zioulis et al. 2018], etc. Depth
estimation techniques from visual inputs can be an alternative
solution.

There have been many different approaches for depth estimation
from visual inputs, such as using motion parallax in videos [Lei
et al. 2015], multi-view geometry from multiple cameras [Steger
et al. 2018], and depth cues from a single image [Bhoi 2019]. The
single-shot approach has more flexibilities in its applications, while
the stereo or multi-view approaches require more constraints in
system configuration, such as camera calibration and synchroni-
sation between cameras. A human can perceive depth even from
one eye through various monocular depth cues about the scene,
e.g., shadow, motion parallax, relative size, etc., based on prior
knowledge and experiences [Howard 2012]. Estimating depth from
single images is a challenge in artificial intelligence (AI) that may
take computer vision beyond more widely considered simpler tasks
such as object recognition and localisation segmentation to scene
understanding. A comparative experiment has been conducted on
various aspects, such as object size and camera pose, to reveal ex-
actly how the network learns depth from a single image input [Dijk
and Croon 2019].

Depth estimation has a wide range of applications. Augmented
reality (AR) applications require depth information of a scene to
naturally integrate virtual objects into the given scene [Lee et al.
2011]. Depth information is also useful in surveillance applications
[Asif and Soraghan 2009; Lamża et al. 2013]. Predicting distance
is essential for autonomous cars, as the vision-based autonomous
driving system needs to measure the distance between the current

Figure 2: Depth estimation result for a different indoor scene
with different light condition, building type and omnidirec-
tional camera

vehicle with surrounding vehicles, pedestrians, and obstacles [Janai
et al. 2020; Luo et al. 2018; Wang et al. 2019].

There is one more problem in scene representation and under-
standing using vision sensors. Normal perspective cameras with
a limited field-of-view (FoV) provide only a partial observation of
the scene. Observation of the whole surrounding 3D environment
requires multiple calibrated and synchronised sensors. Omnidirec-
tional cameras provide a good solution, as they capture the full
surrounding scenes in one image [Kim and Hilton 2013]. Omnidi-
rectional images should be processed in slightly different ways from
the processes of normal perspective images due to the distortions
in the images. There have been several studies on omnidirectional
single image depth estimation. For example, there was an end-to-
end U-Net shape model that took the lead for depth estimation of
omnidirectional images [Zioulis et al. 2018]. Bi-projection based
depth estimation architecture using both the equirectangular image
and its cube map projections has also been proposed [Wang et al.
2020].

These methods require a large labelled dataset for training, but
it is difficult to collect a large depth-labelled dataset because a
synchronised RGB-D sensor for omnidirectional capture is not
generally available. Even the 3D60 dataset [Zioulis et al. 2018], the
largest omnidirectional images set with depth labels, contains only
three types of scenes: office, home and synthetic indoor scenes,
which is not enough for general scene depth estimation. Figure
2 shows an example. The Stanford2D3D set in the 3D60 dataset
consists of 898 images with depth labels captured from 6 office
buildings. It was trained with RectNet model [Zioulis et al. 2018]
and shows 95% depth accuracy in the given dataset. However, it
shows very poor results when we apply it to a different indoor
scene image we capture in our studio. We can easily observe that
the estimated depth map includes lots of errors, especially on planar
regions such as the walls, ceiling and floor, where a more smooth
transition of depth field is expected. The model was over-fitted to
the specific scenes in the dataset.

In this paper, we propose to use domain adaptation for omnidi-
rectional single image depth estimation in order to overcome this
problem. In the proposed domain adaption method, the labelled
source domain data and unlabelled target domain data are taken
as input to infer depth information of the target domain leverag-
ing the features in the source domain. It provides a good solution
for the problem of single omnidirectional image depth estimation
when the limited labelled set is available for the source data scene.
We evaluated the proposed architecture on existing datasets by
limiting the number of labels. The result showed that the proposed
architecture outperforms a traditional encoder-decoder model by
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over 10% in terms of depth accuracy when the labelled set is very
limited.

2 RELATEDWORK
Single-view Depth Estimation for Normal Perspective Images. Most
single image depth estimation methods are based on convolutional
neural networks, and they are often seen as a regression from an
RGB image to a depth map [Fu et al. 2018]. Eigen et al. [Eigen
et al. 2014] proposed an end-to-end model concatenating two net-
works for depth estimation of normal perspective images. These
two networks are coarse and fine networks, and they are based
on AlexNet. The output of the coarse network is concatenated as
part of the input of the fine network. In order to get higher perfor-
mance, Alhashim & Wonka [Alhashim and Wonka 2018] proposed
an end-to-end model with a deeper encoder and a shallow decoder
to estimate depth maps with RGB images as input. Although depth
estimation of normal perspective imagesmay get good performance,
most of these works aim at normal perspective images [Abuowaida
and Chan 2020; Alhashim and Wonka 2018; Fu et al. 2018; Ham-
barde and Murala 2020]. Our experiments show that they do not
perform well for omnidirectional images due to the different FoV
and distortions.

Single-view Depth Estimation for Omnidirectional Images. Re-
lease of omnidirectional image datasets with depth labels such as
Matterport3D and StanFord2D3D [Karakottas et al. 2018], and neu-
ral network models for omnidirectional images enabled depth esti-
mation of omnidirectional images. Similar to the depth estimation
of normal perspective images, there was an end-to-end networked
neural network based on U-Net shape to train the RGB images and
predict the depth maps [Zioulis et al. 2018]. Wang et al. [Wang
et al. 2020] proposed to combine two networks with the equirect-
angular image and its corresponding cubic projection map to avoid
the distortion problem of omnidirectional images. Although these
models show good performance with the given labelled datasets,
the reality is that omnidirectional imaging is suffering a serious
lack of labelled datasets, as mentioned in the Introduction. One way
to overcome this problem is to use domain adaptation. It can solve
the problem of differences in data distribution of different scenes
by mapping information in different fields to a feature space [Pan
and Yang 2009].

Transfer learning. Transfer learning is the application of the
knowledge or patterns learned in a particular field or task to dif-
ferent but related fields. It allows the model to be transferred from
labelled data in the source domain to data in the target domain [Pan
and Yang 2009]. Alhashim & Wonka [Alhashim and Wonka 2018]
utilised the pre-trained DenseNet model on ImangeNet to train and
fine-tune with the NYU image dataset [Silberman et al. 2012] to
predict the corresponding depth map from the RGB image. Yeh et
al. [Yeh et al. 2020] used transfer learning and ordinal regression
to achieve the depth estimation of NYU and KITTI [Geiger et al.
2013] datasets.

Domain Adaptation. Domain adaptation is a method to map the
data distributed in different source domains and target domains to a
feature space [Pan and Yang 2009]. Ganin & Lempitsky [Ganin and
Lempitsky 2015] proposed a depth estimation model based on GAN
including feature mapping network, label classification network,

and domain discrimination network to recognise unlabelled digits
dataset. Similarly, Ren & Lee [Ren and Lee 2018] proposed a domain
adaptation based architecture for depth estimation of normal per-
spective RGB images by training computer graphics (CG) images
based on a generative adversarial network to predict depth maps.

However, most state-of-the-art models aim at normal perspective
images, and only a few of them focus on omnidirectional images.
Omnidirectional images contain more distortion [Zioulis et al. 2018]
than normal perspective images. This distortion makes the models
that aim at normal perspective pictures cannot be directly used
to estimate omnidirectional depth maps. A novel architecture is
needed for depth estimation for a single omnidirectional image.
To solve this problem, we proposed an architecture based on an
encoder-decoder model with domain adaptation.

3 METHOD
3.1 Problem Specification
As briefly mentioned in the Introduction, Figure 2 demonstrates
that even with a 95% accuracy performance model trained with
Stanford2D3D dataset, the performance on an unlabelled different
indoor image set that has similar semantic structures is still poor.
The picture on the wall and the door in the middle should have the
same distance to the camera, and the depth for these parts should
be smooth, but it is recognised as a different distance. The model
did not get high performance because the existing training dataset
covers only a few types of scenes, which leads to overfitting the
model in the training process. In addition, it is much more difficult
to generate ground-truth depth maps for omnidirectional images
than normal perspective images because there is no omnidirectional
depth sensor available. A depth sensor takes a lot of time to scan
and capture a high-resolution depth map, and manual depth map
generation is also hard due to its image distortion and wide FoV.
Therefore, the lack of a training depth label set is a serious problem
in single omnidirectional image depth estimation.

In order to overcome the poor performance with a new dataset
from a different domain and the difficulty of getting a large number
of labelled images from new scenes, we propose an architecture
based on domain adaptation. By adding the unlabelled target do-
main image set to the training process, we can achieve better results
than the traditional encoder-decoder model, even with limited la-
belled images.

3.2 Proposed Architecture
The overview of our proposed architecture is illustrated in Figure 1.
We propose an architecture based on GAN that not only allows the
model to accurately predict the depth of the input RGB images but
also cannot distinguish their domain labels. This architecture lever-
ages the domain adaptation technique for omnidirectional depth
estimation with input images from different domains, including
unlabelled images. In this architecture, the input images are omni-
directional RGB images with given domain labels 0 (source) and 1
(target).

The architecture can be divided into three parts, the encoder,
decoder and domain classifier. We improved the end-to-end model
from [Alhashim andWonka 2018] by replacing the original DenseNet169
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backbone in the encoder with a pre-trained ResNet50, as our exper-
imental results show that a better performance with it. The encoder
with a pre-trained model transforms the RGB images into embed-
ded features, while the decoder predicts the depth maps based on
these embedded features. The encoder-decoder is called a depth
predictor, and the training process tries to make the predictor’s loss
as small as possible. The green part in Figure 3 shows the reverse-
gradient layer. The domain classifier predicts domain labels based
on the reverse features outputted from this reverse-gradient layer
and makes gradient descent towards the direction of loss increase.
It is used to obfuscate domain labels in the training process so
that different domains can be mapped to the same feature space
with similar feature distribution, resulting in the domain-invariant
features.

Therefore, there are two directions of gradient descent during the
training process, the loss of the encoder-decoder model is expected
to be as low as possible, while the loss of the domain classifier is
expected to be as high as possible. By adding a domain classifier to
the end-to-end model, it makes the model unable to identify which
domain the images come from [Ganin and Lempitsky 2015]. By
loading the model with depth labelled images as the source domain
and unlabelled images in the target domain, the model can predict
the depth maps of the target domain images.

Figure 3: Structure of domain adaptation

3.3 Loss Function
The training loss fuction (Equation 1) is defined as a combination
of four loss fucntions, indluding depth loss (Equation 2), Structural
Similarity (SSIM) [Wang et al. 2004] loss (Equation 3), and two do-
main label losses for source domain and target domain, respectively.
SSIM is a good loss function for depth estimation tasks [Alhashim
and Wonka 2018; Godard et al. 2017].
L(GT ,Output) = λLdepth (GT ,Output) + LSSIM (GT ,Output)

+Llabels (GT ,Output) + Llabelt (GT ,Output)
(1)

λ is a weight parameter and set as 0.1 according to empirical result
[Alhashim and Wonka 2018]. ‘GT’ represents ground truth depth
maps, while ‘Output’ demonstrates the output depth map from the
network, and ‘point’ means the pixel in the image.

Ldepth (GT ,Output) =
1
n

n∑
point

��GTpoint −Outputpoint
�� (2)

LSSIM (GT ,Output) =
1 − SSIM(GT ,Output)

2
(3)

The domain label losses, Llabels and Llabelt , are calculated with
Negative Log-Likelihood Loss (NLLLoss). Note that the losses of
them are reverse-gradient.

3.4 Evaluation
In order to quantify and accurately describe the performance of
the model, the six metrics about accuracy and loss of models are
often used as evaluation indicators as they are all correlated to the
performance of models [Alhashim and Wonka 2018; Eigen et al.
2014; Zioulis et al. 2018]. In this section, we introduce these six
evaluation metrics: δ1, δ2, δ3, rel , rms , and loд10.

3.4.1 Accuracy. Following [Eigen et al. 2014], for accuracy, we use
three thresholding accuracy with thresholds 1.25, 1.252, and 1.253.
As shown in Equation 4, it indicates the difference between the two
images by comparing the ground truth and the depth map output
of the model.

max
(

GTpoints

Outputpoints
,
Outputpoints

GTpoints

)
= δ < threshold (4)

The mean of accumulated δ represents the ‘accuracy with thresh-
olding’.

3.4.2 Loss. There are three loss functions to evaluate the robust-
ness of the model: Abs Relative Difference (Equation 5), Linear
RMSE(Equation 6) and Log10 RMSE referred from [Alhashim and
Wonka 2018] (Equation 7). They are shown as rel , rms , and loд10,
respectively, in the result tables. ‘T’ represents the total number
of pixels in an image. The Abs Relative Difference metric is to re-
duce the impact of large distance errors by normalising the error
between output and ground truth depth maps. Linear RMSE is a tra-
ditional method for measuring regression error, while Log10 RMSE
is to reduce the impact of large distance errors as the logarithm
makes the errors relative. The smaller the loss values, the better
the performance.

1
|T |

∑
GT∈T

�� GTpoints −Outputpoints
�� / Outputpoints (5)

√
1
|T |

∑
GT ∈T

GTpoints −Outputpoints
2 (6)

1
T

T∑
point

��log10 (GTpoint ) − log10
(
Outputpoint

) �� (7)
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4 IMPLEMENTATION
In this section, the proposed architecture is trained and tested at
the pixel level and regarded as a depth regression problem. In order
to prove that the depth prediction proposed in this research can
be used for unlabelled omnidirectional images, we implemented
the architecture for omnidirectional image depth estimation and
with a house-scene-based dataset and an office-scene-based dataset
from 3D60 dataset [Zioulis et al. 2018].

The proposed architecture and models are trained on NVIDIA
RTX 3090, with 24GB of CUDA memory. To support research in
this area, the code and dataset used in this work were made avail-
able at https://github.com/MinisculeDust/single_omnidirectional_
image_depth_estimation

4.1 Data Exploration
3D60 dataset [Zioulis et al. 2018] was released with three omnidi-
rectional image datasets, including Matterport3D, Standford 2D3D,
and SUNCG. SUNCG is a computer graphic dataset, while Matter-
port3D and Standford 2D3D are real-world captures. StanFord2D3D
is divided into six areas, as they are taken from 6 different office
buildings.

Figure 4 shows one area of the Matterport3D dataset, presenting
house scenes, while the Stanford2D3D dataset demonstrates the
scenes in office rooms dataset in Figure 5.

Figure 4: Samples of Matterport3D. The left is original RGB
image and right is its corresponding depthmap. In the depth
map, the brightness represents its depth (the brighter, the
closer)

Figure 5: Samples of StanFord2D3D

It should be noted that these sets contain outliers even thoughwe
use them as the ground truth. They were captured by RGB cameras
and LiDAR sensors. These sensors have limitations of scanning
density and also false (or missing) depth in transparent or reflective
surface areas. Due to these hardware limitations, there are some
missing depth areas. These pixels are recorded as 1,000,000 meters
and marked as outliers [Zioulis et al. 2018]. There are still false
depth regions, such as the area behind glass or windows, and it is
difficult to filter them out.

Stanford2D3D dataset contains 898 images divided into six parts
as they are taken in 6 different office buildings. Among them, we
selected Area1 with 190 images as a training dataset in our ex-
periments. For data preprocessing, we removed those scenes that
contain more than 5% of outliers. After that, the source domain
of Stanford2D3D Area1 contains 128 images. The Matterport3D
dataset contained 1280 images. We chose one area (88 images after
removing scenes containing more than 5% outliers) of this house-
scene dataset for the target domain, called ‘Matterport3D Area2’.
The distribution of depth maps show that depth in the scene is be-
tween 0.5 metres and 10 metres apart, and very few areas are above
10 metres. In order to compensate for the inherent problem with
the loss terms [Huang et al. 2018; Ummenhofer et al. 2017], we set
the maximum distance of depth maps as 10 meters and normalised
all depth fields considering the reciprocal of the depth[Alhashim
and Wonka 2018].

These datasets were acquired in different circumstances with
different cameras but with some similar objects, such as doors and
chairs.

4.2 Implementation Details
In all experiments, the input image resolution was 256 × 512, and
the batch size was 16. The learning rate was set as 0.0001, and the
number of the epoch was set as 100. The Adam-optimizer method
was adopted, with parameter β1 = 0.9, β2 = 0.999.

We did not crop any part of the input images, even though they
contained missing points or outliers due to correction preprocess-
ing. We also did not crop the output images before computing
the accuracies and losses. This is because, in practice, the image
contains different amounts of outliers, which affects the output of
the model to some extent. In addition, the purpose of our work is
not to simply improve the accuracy of the predicted depth map
but to verify that the proposed semi-supervised architecture based
on the domain adaptation method can outperform the traditional
supervised model with limited labelled data.

5 EXPERIMENTS
5.1 Baseline
In order to simulate the situation of limited labelled images in dif-
ferent scene types, we tested the performance of depth estimation
according to the size of the labelled training dataset. We trained
the end-to-end models with StanFord2D3D Area1 as the training
dataset and Matterport Area2 as the testing set. We gradually re-
duced the proportion of the training set to simulate the scenario in
which a limited amount of data is used to train and predict depth
maps of unlabelled RGB images.

https://github.com/MinisculeDust/single_omnidirectional_image_depth_estimation
https://github.com/MinisculeDust/single_omnidirectional_image_depth_estimation
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Table 1: Performance of ResNet50 backbone encoder-decoder model with different size of dataset

Training Dataset Testing Dataset δ1 ↑ δ2 ↑ δ3 ↑ rel ↓ rms ↓ loд10 ↓

Whole Stanford2D3D Area1 (128 images) 0.6576 0.8986 0.9585 0.1918 1.8300 0.0908
40% Stanford2D3D Area1 (51 images) Matterport3D Area2 0.6494 0.8871 0.9587 0.2077 1.9669 0.0935
20% Stanford2D3D Area1 (25 images) 0.6135 0.8394 0.9390 0.2376 2.2732 0.1033

Table 2: Performance of proposed architecture with different size of dataset (uncertainty of the model is shown in Figure 9)

Source Domain Target Domain δ1 ↑ δ2 ↑ δ3 ↑ rel ↓ rms ↓ loд10 ↓

Whole Stanford2D3D Area1 (128 images) 0.7259 0.8994 0.9557 0.2189 1.7223 0.0839
40% Stanford2D3D Area1 (51 images) Matterport3D Area2 0.7191 0.9063 0.9546 0.1805 1.6025 0.0827
20% Stanford2D3D Area1 (25 images) 0.7181 0.9252 0.9709 0.1871 1.5431 0.0799

Table 1 shows that the accuracy of estimated depth by the ResNet50
backbone encoder-decodermodel decreased to 61.35% of first thresh-
olding accuracy when only 20% of the training set (25 images) were
used.

5.2 Domain Adaptation
We chose the Resnet50-backbone model for our domain adaptation
architecture as it showed the best performance. The source domain
is Stanford2D3D Area1, and the testing dataset is Matterport3D
Area2. Table 2 shows the output of the proposed domain adaptation
architecture with decreasing number of labelled training images.
Overall the proposed architecture shows higher accuracy in depth
estimation than the baseline method. One more important observa-
tion is that the proposed method kept a similar level of performance
(72.59% to 71.81% for δ1) when the number of the labelled training
set is reduced, while the performance of the baseline method de-
creased from 65.76% to 61.35%. Other metrics also showed similar
performance even though the size of the training set had been de-
creased. They sometimes showed even slightly better performance
with less training set (source domain). We guess this is because the
training has been less biased to the source domain.

Obtained results of proposed architecture with 20% data are
shown in Figure 6. The 1st and 2nd ones are close to the ground
truth though they are a bit blurry. It can be observed in the 3rd
image that if a wall has some patterns, it influences the depth map
and make it bumpy. The 4th one shows some depth errors around
the stairs region, but even the ground truth map also have errors
in the region. The 5th and 6th ones show errors in the window
regions as they are transparent.

We tested the proposed methods for our own dataset captured
in various indoor scenes: studio, corridors, and building reception
areas. They were captured with Spheron VR1 and Ricoh Theta S2
omnidirectional cameras. Figure 7 shows the comparison of depth
estimation results of the proposed domain adaptation architecture
against the encoder-decoder architecture. Only subjective evalu-
ation can be provided as their ground-truth depth maps are not

1https://www.spheron.com/home.html
2https://theta360.com/uk/about/theta/s.html

Figure 6: Depth estimation results with the proposed do-
main adaptation architecture. (Left: Original image, Middle:
Ground-truth depth map, Right: Estimated depth map)

available. The test scenes are different from the training set. We
can see that the proposed method predicted roughly accurate depth
maps for the test images. It can be observed that the output gen-
erated by domain adaptation architecture has a smoother texture
on the object with the same depth plane in the real world. The
estimated depth by the proposed model with domain adaptation is
closer to the real distance.

In conclusion, the results show that the performance of the pro-
posed architecture outperforms the traditional end-to-end models
when the labelled omnidirectional images are limited.

https://www.spheron.com/home.html
https://theta360.com/uk/about/theta/s.html
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Figure 7: Depth estimation results on our own dataset. (Left:
Original image, Middle: Depth map by the encoder-decoder
model, Right: Depth map by the proposed domain adapta-
tion model)

5.3 Error Analysis and Discussion
To further analyse the performance of the model, we demonstrate
the δ maps of several samples, representing the difference against
the ground-truth depth map in the form of a heat map. The delta
map in Figure 8 shows errors calculated by the first thresholding
accuracy evaluating formula mentioned in Section 3.4.1.

Figure 8: δ Maps of the ResNet50-based model for domain
adaptation

For the uncertainty of the results, Figure 9 demonstrate the
encoder-decoder model and domain adaptation architecture’s per-
formance with different sizes of the source domain, respectively.

(a) Whole Data

(b) 40%

(c) 20%

Figure 9: Different threshold accuracies of depth estimation
under different dataset sizes. Uncertainty in estimates dis-
played as boxplots. (Left: Encoder-Decoder model, Right:
Proposed Domain Adaptation model)

Each box contains five values, representing the accuracies on the
epoch 80, 85, 90, 95 and 100. It can be observed that although the
stability of domain adaptation is not as good as the traditional end-
to-end model when the dataset is small, the accuracy is significantly
higher than the traditional model.

As previously mentioned, the ground-truth depth maps for train-
ing have incomplete regions due to hardware limitations. These
false labels may cause the wrong prediction of the model. Figure 10
shows an example showing serious depth errors in the regions with
large glass walls. If we consider those glasses as a solid structure,
the depth map should show planar depth at the locations of the
walls. Even if we ignore glasses, considering the limitation of the
sensors, the ground truth for the regions beyond the glasses are
still wrong. Most depth sensors, including LiDAR, cannot properly
detect and measure transparent or reflective surfaces. This is an-
other reason for the low accuracy of our model as those wrong
depths were also considered as ground-truth for training and even
for evaluation.
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Figure 10: Example of false ground truth. (Left: Original im-
age, Right: Given depth labels)

For practical applications which need to detect even glasses and
mirrors, additional modalities, such as acoustic sensors, can be
considered to overcome these problems[Kim et al. 2020]. However,
we don’t consider these issues in this work. Our research focus was
to verify the application and efficiency of domain adaptation in
the field of omnidirectional images. Therefore we did not focus on
improving the performance of the model itself.

6 CONCLUSIONS AND FUTUREWORK
We proposed the depth estimation architecture with domain adapta-
tion to predict scene depth for unlabelled omnidirectional image sets
when the labelled training sets are limited. The experiments show
that the performance of domain adaptation architecture outper-
forms the traditional end-to-end model for omnidirectional depth
estimation in the situation of a limited number and variety of data.
Furthermore, this performance shows that an end-to-end model
with domain adaptation can predict the reasonably good quality
of depth maps for the omnidirectional images in a different scene
without labels. This result means that our work creates a potential
direction for depth estimation of unlabelled omnidirectional scenes
with limited labelled data.

There are some future works for omnidirectional single image
depth estimation, such as getting better performance and solving
the problem of scenes with transparent and reflective objects. In
order to get better performance, the domain adaptation technique
can be combined with more efficient models for distortion, such as
deformable convolution [Dai et al. 2017] to consider the distortion
of omnidirectional images due to the projection of the spherical
domain to the equirectangular domain. In addition, the domain
adaptation technique that we used in our proposed architecture
depends on representations learned in the source domain that can
also be useful in the target domain. For this to be effective, we may
need to extract generic features and not fine details from the source.
This has been explored in the context of human activity recognition
with cascade learning [Du et al. 2019; Marquez et al. 2018] in which
a model trained layer-by-layer is shown to extract features in a
coarse to fine manner. We expect to adopt this framework to explore
better extraction of transferable features. Furthermore, we may find
a better method to recognise windows and leverage the idea of
masking the window parts to solve this problem during the training
process for the images containing windows.
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