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ABSTRACT

To provide an immersive experience in a mirrored virtual world
such as spatially synchronised audio, visualisation of reproduced
real-world scenes and haptic sensing, it is necessary to know the
materials of the object surface which provides the optical and acous-
tic properties for the rendering engine. We focus on identifying
materials from real-world images to reproduce more realistic and
plausible virtual environments. To cope with considerable variation
in material, we propose the DPT architecture which dynamically
decides the dependency on different patch resolutions. We evaluate
the benefits of learning from multiple patch resolutions on LMD and
OpenSurfaces datasets.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—Interaction paradigms—Virtual reality; Computing
methodologies—Artificial intelligence—Computer vision—Scene
understanding

1 INTRODUCTION

Mirror World is a digital twin of the real (physical) environment in
the virtual environment [5, 6]. It reproduces real-world structures
in a virtual world in visual, geographical, and attributional senses.
In virtual and augmented reality applications of the mirror world,
interactions with the surrounding environment make immersive ex-
perience possible. To enhance the immersiveness of users, the render
engine needs material properties, which can be used to infer how
the lightwave or soundwave should be reflected by the object sur-
faces. For example, in virtual applications, plausible scenes can be
created with physically-based rendering techniques, which trace the
lightwave from the light source to the virtual camera, and calculates
how the spectra change based on materials when interacting with
the object surfaces. In augmented applications, the immersive audio
can be synthesised based on the surrounding environments including
material and scene structure. In this paper, we focus on the scenario
that the applications are created from real-world scenes and propose
to recognise material categories from images.

The material segmentation task aims at assigning material cate-
gories such as metal and plastic to each pixel of the image. Material
segmentation is still a challenging task considering the variations in
the appearance and shape of a single material. Although it is pos-
sible to train generalisable networks by learning material features
from cropped patches, recent material segmentation methods fail to
account the area that a material region can cover [2], and chooses a
fixed patch resolution for the whole dataset. Ideally, small patch res-
olution should be applied to the boundaries between materials, while
large patch resolution can be used to cover as much information as
possible in areas belonging to a single material.
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Figure 1: Predicted material segmentation of one bedroom image.

Instead of searching for a fixed patch resolution, we propose the
Dynamic Patch Training (DPT) architecture. The DPT architecture
consists of three modules, the cross-resolution feature extractor, the
dynamic backward attention module, and the feature merging mod-
ule. The cross-resolution feature extractor employs non-overlapping
network kernels to process images as cropped patches. The adjacent
patch features are then merged to increase the patch size at each net-
work stage. In this paper, we evaluated two non-overlapping kernel
choices, the transformer and the convolutional layer whose step is
equal to its kernel size. The transformer-based variant is from [3].
The backward attention module predicts per-pixel attention masks to
aggregate the intermediate cross-resolution patch features. Finally,
the feature merging module is built upon the residual connection
to regularise the DPT architecture to learn complementary features
compared with the basic backbone encoder.

2 PROPOSED METHOD

The hypothesis behind the DPT training architecture is that the
cross-resolution patch features can improve the material segmenta-
tion quality both qualitatively and quantitatively. This section will
introduce the architecture components briefly.

Cross-Resolution Feature Extractor The cross-resolution
feature extractor is designed to learn from patches cropped by mul-
tiple resolutions in a single path. Instead of cropping the images
in advance, we first propose to enhance the CAM-SegNet [2] with
DPT architecture. The local branch of CAM-SegNet is replaced
with non-overlapping convolutional kernels whose stride is the same
as the kernel size. In detail, we use 4× 4 kernel followed by a
multi-layer perceptron (MLP). The 4× 4 kernel merges adjacent
features to increase the patch size and downsample the feature map.
The MLP makes the network deeper and learns features within the
patch. Inspired by the MLP architecture, a transformer named Dy-
namic Backward Attention Transformer (DBAT) was proposed [3].
The DBAT replaces the convolutional kernel with window-based
self-attention which learns material features within the window size.
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Datasets LMD OpenSurfaces –
Architecture Pixel Acc Mean Acc Pixel Acc Mean Acc mIoU #params (M) #flops (G) FPS

ResNet-152 80.68 ± 0.11 73.87 ± 0.25 83.80 63.56 52.09 60.75 70.27 31.35
ResNeSt-101 82.45 ± 0.20 75.31 ± 0.29 85.10 67.13 55.32 48.84 63.39 25.57

EfficientNet-b5 83.17 ± 0.06 76.91 ± 0.06 84.63 65.47 53.25 30.17 20.5 27.00
Swin-t 84.70 ± 0.26 79.06 ± 0.46 86.19 69.41 57.71 29.52 34.25 33.94

CAM-SegNet-DBA 86.12 ± 0.15 79.85 ± 0.28 86.64 69.92 58.18 68.58 60.83 17.79
DBAT 86.85 ± 0.08 81.05 ± 0.28 86.28 70.68 58.08 56.03 41.23 27.44

Table 1: Material recognition performance on the LMD and the OpenSurfaces. The FPS is calculated by processing 1,000 images with one NVIDIA
3060ti. The uncertainty evaluation is reported across five runs. The Pixel Acc is the averaged per-pixel accuracy and the mean Acc is the accuracy
averaged across each category. The #params is the number of trainable parameters of the models.

Dynamic Backward Attention Module The backward at-
tention module predicts per-pixel attention masks to combine the
cross-resolution features. As shown by the following equations, each
pixel j,k of the image is processed by i different patch resolutions.
Assume the encoder consists of four stages. The attention masks
Attn are predicted from the last feature map Map4 and normalised
by the softmax operation. These masks represent the dependency on
each resolution for each pixel. The weighted sum operation gives
the aggregated feature at pixel j,k.

Attni, jk =
e fattn(Map4)i, jk

∑i=N
i=1 e fattn(Map4)i, jk

(1)

Aggregated Feature jk =
i=N

∑
i=1

Attni, jk ×Mapi, jk (2)

Feature Merging Module The feature merging module is
used to regularise the DPT architecture to learn complementary
features compared with its backbone encoder. We apply an attention
module to identify the relevant information in the aggregated cross-
resolution patch features based on the knowledge about the final
stage feature map Map4. The relevant features are then merged into
Map4 with a residual connection.

3 EXPERIMENTAL EVALUATION

As shown in Table 1 [3], the CAM-SegNet-DBA and DBAT achieve
the best performance compared with the other four chosen networks.
For the real-time models, Although CAM-SegNet-DBA achieves
0.36%/0.10% improvement in Pixel Acc/mIoU when evaluated on
OpenSurfaces, the DBAT performs better on LMD and runs 9.65
more frames per second with 19.6G fewer FLOPs.

Figure 1 shows the segmented images for the chosen models. The
CAM-SegNet-DBA successfully identify the drawing on the wall as
paper and other models tend to recognise it as glass or fabric. For
the DBAT, it can segment the images with more adequate boundaries
compared with the outputs of other models. These figures indicate
that learning from image patches can help the network extract robust
and generalisable material features.

4 APPLICATION TO VR REPRODUCTION

In order to provide better user experiences adapted to the human
perceptual system in the mirror world, the rendering engine requires
both reconstructed 3D objects and their surface material information.
A particular example is the vision-based immersive sound synthesis
[1, 4]. 3D room geometry and object labels are reconstructed from a
single image using the semantic scene reconstruction method. This
3D model can be loaded on a 3D rendering engine like Unity or
Unreal for real-time interaction in VR. As shown in Figure 2, the
estimated material information can be imported to Unity and used
for real-time 3D sound generation using a spatial audio plug-in like
Google Resonance or Steam Audio.

(a) Unity material assignment inter-

face

(b) Immersive sound VR expe-

rience

Figure 2: Material assignment for spatial sound rendering in Unity.
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5 CONCLUSION

We proposed a dynamic patch training architecture to enhance mate-
rial features by learning from cross-resolution patches. In addition,
we provide an example which embeds a material segmentation net-
work into the creation pipeline of a mirror world with accelerated
efficiency. In the future, we plan to extend our DPT architecture
with material property estimation and apply it to VR/AR applica-
tions such as remote collaborations, robot interaction and haptic
interaction, etc.

REFERENCES

[1] M. Alawadh, Y. Wu, Y. Heng, L. Remaggi, M. Niranjan, and H. Kim.

Room acoustic properties estimation from a single 360° photo. In 2022
30th European Signal Processing Conference (EUSIPCO), pp. 857–861,

2022.

[2] Y. Heng, Y. Wu, S. Dasmahapatra, and H. Kim. Cam-segnet: A context-

aware dense material segmentation network for sparsely labelled datasets.

In International Conference on Computer Vision Theory and Applica-
tions (06/02/22 - 08/02/22), February 2022.

[3] Y. Heng, Y. Wu, S. Dasmahapatra, and H. Kim. Enhancing material

features using dynamic backward attention on cross-resolution patches.

In 33rd British Machine Vision Conference 2022, BMVC 2022, London,
UK, November 21-24, 2022. BMVA Press, 2022.

[4] H. Kim, L. Remaggi, P. J. Jackson, and A. Hilton. Immersive spatial

audio reproduction for vr/ar using room acoustic modelling from 360°

images. In 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pp. 120–126, 2019. doi: 10.1109/VR.2019.8798247

[5] A. Ricci, M. Piunti, L. Tummolini, and C. Castelfranchi. The mirror

world: Preparing for mixed-reality living. IEEE Pervasive Computing,

14(2):60–63, 2015. doi: 10.1109/MPRV.2015.44

[6] Z. Zhang, B. Cao, J. Guo, D. Weng, Y. Liu, and Y. Wang. Inverse

virtual reality: Intelligence-driven mutually mirrored world. In 2018
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp.

735–736, 2018. doi: 10.1109/VR.2018.8446260

578


